
PHYSICAL REVIEW E, VOLUME 63, 051107
Monostable array-enhanced stochastic resonance
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We present a simple nonlinear system that exhibitsmultipledistinct stochastic resonances. By adjusting the
noise and coupling of an array of underdamped, monostable oscillators, we modify the array’s natural frequen-
cies so that the spectral response of a typical oscillator in an array ofN oscillators exhibitsN21 different
stochastic resonances. Such families of resonances may elucidate and facilitate a variety of noise-mediated
cooperative phenomena, such as noise-enhanced propagation, in a broad class of similar nonlinear systems.
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I. INTRODUCTION

Stochastic resonance~SR! is a dynamic, noise-mediated
nonlinear phenomenon. The canonical example@1# involves
an overdamped but sinusoidally driven, noisy, bistable os
lator. Adjusting the noise intensity, so that the average
of hopping between the stable states is~approximately! twice
the drive frequency, maximizes the response of the sys
as measured by the spectral power at the drive freque
S@ f D# or by a suitable signal-to-noise ratio~SNR!. Indeed, a
hallmark of canonical SR is a local maximum in SNR as
function of noise.

Since its discovery almost two decades ago, SR has b
extended in many directions@2#. For example, the over
damped, bistable potential has been replaced by anunder-
damped, monostable~quartic! potential @3#. Such a system
has a natural~or characteristic! frequency dependent on th
initial amplitude, and hence on the energy, of the oscilla
Adjusting the noise intensity, so that the average ene
causes the natural frequency to coincide with the drive
quency, maximizes the spectral response of the system
measured~for example! by S@ f D#. Recent work@4# has re-
alized both this resonant behaviorand canonical SR in a
single underdamped bistable oscillator. SR has also been
served in special, time-varying, monostable potentials@5#.

Alternatively, individual overdamped,bistablestochastic
resonators have been coupled together in arrays@6,7#. The
spectral response of a stochastic resonator coupled int
array of similar elements can significantly exceed that of
isolated stochastic resonator. If the noise and coupling
both adjusted to establish the appropriate spatiotempora
ganization, then the spectral response of the coupled osc
tor to a sinusoidal signal is greatly enhanced. A signature
array-enhanced SR~AESR! is a local maximum in SNR as
function of both noise and coupling, manifested~for ex-
ample! in a single peak or ‘‘resonant island’’ in a contou
plot of SNR as a function of noise and coupling@7#. Such
arrays can also exhibit noise-enhanced propagation~NEP!
@8#, where moderate noise significantly extends the propa
tion of a signal through the array.

In this work, we study noise-mediated resonant behav
in a simple array of underdamped, symmetric but nonline
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monostable oscillators. We demonstrate how to tune no
intensity and coupling strength to adjust the natural frequ
cies of the individual elements in the array so as to amp
the spectral power at particular frequencies. We show
the spectral response of a typical oscillator coupled into
array ofN oscillators may exhibitN21 suchintrawell sto-
chastic resonances~adopting the language of@4#!, each reso-
nance distinguished by a unique coupling.~Stochastic multi-
resonance has been observed before, but in m
complicated, time-varying potentials@9#.! These families of
resonances may have practical implications for the desig
signal-processing arrays and might be observable in the r
nant vibrations of impure crystals, or in anomalously lo
propagation of signals in noisy media.

II. NUMERICAL TECHNIQUES

Consider an array of noisy driven oscillators whosenth
element is specified by the equilibrium coordinatexn@ t#,
which evolves according to

mẍn1g ẋn52V8@xn#1AD sin@2p f Dt#1sNn@ t#

1k¹2xn , n51, . . . ,N. ~1!

The accent denotes differentiation with respect to posit
and the overdots indicate differentiation with respect to tim
The nonlinear potentialV@x#5 1

2 ax21 1
4 bx4 is monostable

for a,b.0. The stochastic termNn@ t# represents~band-
limited! white noise with zero mean and unit root-mea
square amplitude. The noise is uncorrelated from site to s
The discrete Laplacian¹2xn5xn2122xn1xn11 implements
local linear coupling. The phantom oscillatorsx0[x1 and
xN11[xN enforce free boundary conditions.

Throughout this work, we fix the inertia and viscosi
parameters,m51 and 2G[g50.01. We also fix the shap
of the potential,a51 andb50.1. However, we vary—and
tune—the noise and coupling amplitudess andk. We con-
sider weak drives,AD!s with f D;1, so that the spectra
responses are relatively simple, with onlyN prominent natu-
ral frequencies.

We numerically integrate@10# the stochastic differentia
Eq. ~1! with a small time stepdt5TD/210, the Gaussian
©2001 The American Physical Society07-1
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noise being generated via the Box-Muller algorithm@11# and
a pseudorandom number generator. We estimate the m
square amplitude per frequency~or power spectrum! S@ f # by
averaging the spectra of many segments of a long time se
of the nth oscillator of the array. Each spectrum is norm
ized so that the bounded area is the total mean-square a
tude. We find the spectra of all oscillators in an array to
qualitatively similar, except for the middle oscillator~when it
exists!, which exhibits fewer spectral peaks.

III. WEAK-NOISE THEORY

For weak drives, a typical spectrumS@ f # of an isolated
N51 oscillator consists of a single prominent natural f
quency peak superimposed on a smooth background. In
if the noise is sufficiently weak so that the oscillator is n
driven beyond its linear regime, then for vanishing drivin
we can solve the linearized Eq.~1! for the Fourier transform
of the time seriesx̃@ f # and write

SL@ f #}ux̃@ f #u2}
1

m2~ f 22 f 0
2!21g2f 2 , ~2!

wheref 05Aa/m is the natural frequency of the system. Fi
ure 1 compares the theoretical linearized spectrum of Eq.~2!,

FIG. 1. On the left, a typical low-noise spectrumS@ f # ~solid
curve! of a nonlinear monostable oscillator consists of a sin
prominent natural frequency peak on a smooth backgroundB@ f #
~dotted curve!. On the right, a numerically computed low-nois
spectrumS@ f # ~solid! agrees well with the corresponding linearize
theoretical spectrumSL@ f # ~dotted!. All logarithms are base ten
Parameters arem51, g50.01, a51, b50.1, AD50, f D50.285,
ands250.001.
05110
an-

ies
-
pli-
e

-
ct,
t
,

suitably normalized, with a numerically computed spectru
for low noise. The agreement is excellent, except for a sli
rise in the high-frequency tail of the computational spectru
which is an unavoidable aliasing artifact@11#. It is worth
noting that alternative stochastic linearization techniqu
@12# can be readily applied to theN51 case, yielding cor-
rections to Eq.~2! for small deviations from linearity.

For weak drives, a typical spectrumS@ f # of a coupled
N52 oscillator consists oftwo prominent natural frequency
peaks superimposed on a smooth background. These p
correspond to symmetric~in-phase! and antisymmetric~an-
tiphase! modes of the array. For sufficiently weak noise a
vanishing driving amplitude, we can again explicitly repr
sent the spectrum, this time as

SL@ f #}
1

m2~ f 22 f 0
2!21g2f 2 1

1

m2~ f 22 f 1
2!21g2f 2 , ~3!

where f 05Aa/m is the frequency of the coupling
independent symmetric mode andf 15A(a13k)/m is the
higher frequency of the coupling-dependent antisymme
mode. Theory and computation are again in excellent ag
ment. Figure 2 provides example spectra at low and h
noise for bothN51 andN52. Note the rise~in the back-

e

FIG. 2. Closeups of typical spectra forN51 ~isolated! and N
52 ~coupled! nonlinear monostable oscillators, for low~solid! and
high ~dashed! noise. TheN52 spectrum includes two prominen
natural frequency peaks, corresponding to the symmetric and
symmetric modes of the corresponding linearized oscillators.~At
high noise, additional minor peaks centered at nonlinear overto
appear.! Other parameters are as in Fig. 1, but with couplingk
51 for theN52 spectrum, and noise variance as indicated.
7-2
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MONOSTABLE ARRAY-ENHANCED STOCHASTIC RESONANCE PHYSICAL REVIEW E63 051107
ground! and the shift and broadening of the peaks with
creasing noise.~At higher noise, additional peaks centered
overtones of the natural frequency appear.!

Although analytic techniques can generate~typically
elaborate! expressions for the shapes of the spectral pe
@13#, a simple theory can readily capture their movemen
and this is sufficient for our purposes. If we momentar
neglect damping and driving, we may estimate the natu
frequency of the nonlinear monostable oscillator by integ
ing the energy expressionE5 1

2 mẋ21V@x# between the clas
sical turning pointsx6@E# to get the nonlinear dispersio
relation

1

f @E#
5T@E#52Am/2E

x2@E#

x1@E# dx

AE2V@x#
, ~4!

where the turning points may be calculated via the impl
relationshipV@x6#5E. Although the integral in Eq.~4! can
be performed analytically, it is more convenient to nume
cally integrate it for a range of energies. Returning to the
equation of motion, including damping and driving, at stea
state, we find dimensionally and numerically that the aver
energy is proportional to the mean-square amplitude of
noise ^E&;2s2t/g5D/G. This enables us to predict th
position of the natural frequency peakf L as a function of
noise. Theory and computation are in excellent agreeme

IV. MODERATE NOISE

For small noises2!a3/b, the natural peak of an isolate
N51 oscillator is fixed, but for large noises2@a3/b, the

FIG. 3. Shift in natural frequency peakf of an N51 oscillator
with noise. As the peak shifts to larger frequencies, it induce
local maximum in the spectral responseR5S@ f D#/B@ f D# at the
drive frequencyf D , which is indicated by the dashed line.
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peak shifts to higher frequencies and broadens. Provided
nonlinearity is nonzero (b.0), increasing noise will cause
the natural frequency peak to shift to increasingly large f
quencies, as illustrated by the top graph in Fig. 3. This s
generates an enhanced response to a weak drive whe
natural frequency peak centers on the drive frequency.
measure this response by the ratio of the spectrumS@ f # at

a

FIG. 4. Shift in the natural frequencies of anN52 oscillator
with noise and coupling. At a given drive frequencyf D , indicated
by the horizontal dashed line, the noise-induced shift~top left! in-
duces two local maxima in the SNR, as a function of noise~bottom
left!, while the coupling-induced shift~top right! induces one local
maximum as a function of coupling~bottom right!.

FIG. 5. Shift in the natural frequencies of anN53 oscillator
with noise and coupling. At a given drive frequencyf D , indicated
by the horizontal dashed line, the noise-induced shift~top left! in-
duces two local maxima in the SNR, as a function of noise~bottom
left!, while the coupling-induced shift~top right! induces two local
maxima as a function of coupling~bottom right!.
7-3
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the drive frequency to the smooth backgroundB@ f # at the
drive frequency,R[S@ f D#/B@ f D#. This measure is faithfu
to the squared ‘‘stochastic amplification factor’’ original
employed to describe monostable SR@3#, and it best exhibits
the generalization of the phenomenon to arrays. We can
culateR with vanishing drive amplitude becauseR measures
whether or not, and to what extent, anatural frequency peak
is at the drive frequency, and because this frequency ma
ing is the essential ingredient of monostable SR. The
sponseR is illustrated in the bottom graph of Fig. 3, where
is maximized when the natural frequency peak shifts to
drive frequency, as indicated by the dashed lines.

A similar but richer situation exists forarrays of nonlin-
ear monostable oscillators. Consider next the caseN52. A
typical spectrum, derived from the time series of either
cillator, now consists of two natural frequency peaks, cor
sponding to the symmetric and antisymmetric modes, rid
on top of a smooth background. We can again predict
shift of the peaks, this time with respect toboth noiseand
coupling, as indicated in Fig. 4. For sufficiently large fr
quencies, there exists one local maximum inR as a function

FIG. 6. Contour plots of the spectral responsesR, as a function
of ‘‘local’’ noise s2 and couplingk, for oscillators at the ends o
N52, 3, and 4 arrays. The drive frequencies aref D50.285, 0.3,
and 0.3, respectively. In each case, there areN21 local maxima.
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of coupling, due to the drift of the antisymmetric mode pea
Also, for sufficiently large frequencies, there aretwo local
maxima inR as a function of noise. This result is a sing
local maximum in the noise-coupling plane. The top conto
plot of Fig. 6 summarizes the spectral response, where a
noise ‘‘island’’ accompanies a high-noise ‘‘ridge.’’

For N53, a typical spectrum, derived from the time seri
of either end oscillator, consists ofthree natural frequency
peaks riding on top of a smooth background. Due to the s
of the peaks with noise and coupling, for sufficiently lar
frequencies, we expecttwo local maxima inR as a function
of coupling~due to the drift of the nonsymmetric modes! and
three local maxima inR as a function of noise. However
peak broadening due to nonlinear dispersion at high no
consolidates the peaks, limiting the number of local maxi
in R as a function of noise to two, as indicated in Fig. 5. Th
induces two local maxima in the noise-coupling plane~for
f D just above the zero-noise natural frequencies!. The middle
contour plot of Fig. 6 summarizes the spectral respon
where two low-noise islands accompany a high-noise rid
The bottom contour plot of Fig. 6 is forN54, where there
are three low-noise islands.

In this way, the spectra of typical oscillators in an array
N oscillators exhibitN21 distinct resonant local maxima a
a function of noise and coupling. Similar results are obtain
for moderate drive amplitudesAD&s. However, for large
drive amplitudesAD@s, the spectral responses are mu
more complicated. Large-amplitude drives induce many n

FIG. 7. When driven sinusoidally only at one end (n51), ar-
rays of monostable nonlinear oscillators also exhibit NE
Smoothed contour plot of SNR as a function of noise variances2

and oscillator numbern. Intermediate noise optimizes the propag
tion of the signal. Parameters arem51, g5531025, a51, b
51, AD51, f D50.45, andk51.
7-4
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MONOSTABLE ARRAY-ENHANCED STOCHASTIC RESONANCE PHYSICAL REVIEW E63 051107
linear peaks in the spectra, thereby complicating efforts
succinctly summarize the dynamics.

V. NOISE-ENHANCED PROPAGATION

Recent studies have demonstrated that noise can su
propagation in a variety of numerical and experimental n
linear systems@8#, including arrays of bistable oscillators
Here, we note that NEP is also obtained in arrays
monostable oscillators. The numerical model is like that
Eq. ~1!, except only the initial oscillator is sinusoidall
forced. By recording a signal-to-noise ratio at each oscilla
in the array, we demonstrate that moderate noise sig
cantly extends the propagation of the sinusoidal input.
oscillators near the forcing end, the SNR decreases as
noise increases. But for oscillators farther away, the S
goes through a local maximum as the noise increases, w
is the signature of a classic stochastic resonance. Oscilla
near the forcing end do not need help from the noise, as
forcing amplitude there is large; however, oscillators
from the forcing do need help from the noise, as the sig
there is attenuated. For a given noise power, SNR decre
with oscillator number, downstream along the chain. De
ing the propagation lengthas the number of oscillators~or
distance along the chain! for which the SNR exceeds a ce
tain fixed cutoff, we observe that the propagation length
longest for moderate noise.

These data can be succinctly combined into a contour
of SNR versus noise variance versus oscillator number, a
Fig. 7. Gray levels code SNR, with white indicating larg
SNR and black indicating small SNR. The bottom-left corn
represents the peak SNR of the first oscillator. The S
decreases everywhere away from this corner. However,
ur
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distinct bulges in the contours, where regions of large S
extend toward the free end of the chain, are the signature
NEP. When the noise variances2;103, the SNR extension
reaches the end of the chain, indicating that intermed
noise has succeeded in sustaining the signal throughou
length.

VI. CONCLUSIONS

Arrays of monostable oscillators exhibit multiple stocha
tic resonances, each resonance distinguished by a diffe
coupling. In the absence of nonlinearity (b50), the natural
frequency peaks do not shift to higher frequencies w
noise, and the resonant islands in the noise-coupling p
disappear. The abundance of these resonances suggest
nomenology richer than that of arrays of overdamp
bistable oscillators, which exhibit only a single local max
mum ~in SNR! as a function of noise and coupling@7#. Fur-
thermore, having also observed NEP in monostable arr
we anticipate that such arrays can exhibit interesting sig
processing as well as novel signal propagation. Certai
monostable arrays provide excellent examples of how no
and coupling can cooperate to induce multiple nonlin
resonances.
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