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Monostable array-enhanced stochastic resonance
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We present a simple nonlinear system that exhifitdtiple distinct stochastic resonances. By adjusting the
noise and coupling of an array of underdamped, monostable oscillators, we modify the array’s natural frequen-
cies so that the spectral response of a typical oscillator in an arréy asfcillators exhibitaN—1 different
stochastic resonances. Such families of resonances may elucidate and facilitate a variety of noise-mediated
cooperative phenomena, such as noise-enhanced propagation, in a broad class of similar nonlinear systems.
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[. INTRODUCTION monostable oscillators. We demonstrate how to tune noise
intensity and coupling strength to adjust the natural frequen-
Stochastic resonand®R) is a dynamic, noise-mediated, cies of the individual elements in the array so as to amplify
nonlinear phenomenon. The canonical exanifilénvolves  the spectral power at particular frequencies. We show that
an overdamped but sinusoidally driven, noisy, bistable oscilthe spectral response of a typical oscillator coupled into an
lator. Adjusting the noise intensity, so that the average rat@rray of N oscillators may exhibiN—1 suchintrawell sto-
of hopping between the stable stategigproximatelytwice  chastic resonanceadopting the language ¢4]), each reso-
the drive frequency, maximizes the response of the systenfiance distinguished by a unique couplif§tochastic multi-
as measured by the spectral power at the drive frequendgsonance has been observed before, but in more
S fp] or by a suitable signal-to-noise ratiSNR). Indeed, a complicated, time-varying potential9].) These families of
hallmark of canonical SR is a local maximum in SNR as aresonances may have practical implications for the design of
function of noise. signal-processing arrays and might be observable in the reso-
Since its discovery almost two decades ago, SR has bedtant vibrations of impure crystals, or in anomalously long
extended in many directiong2]. For example, the over- Propagation of signals in noisy media.
damped, bistable potential has been replaced byrater-
damped, monostablequartio potential[3]. Such a system Il. NUMERICAL TECHNIQUES
has a naturalor characteristicfrequency dependent on the
initial amplitude, and hence on the energy, of the oscillator.
Adjusting the noise intensity, so that the average energ
causes the natural frequency to coincide with the drive fre-
guency, maximizes the spectral response of the system, as % G\ :
measuredfor example by §fy]. Recent work4] has re- M+ Y%= =V TXa ]+ Ap SiN 2ot + N[ t]

Consider an array of noisy driven oscillators whagh
lement is specified by the equilibrium coordina¢gt],
hich evolves according to

alized both this resonant behaviand canonical SR in a +kV?%,, n=1,...N. (D)
single underdamped bistable oscillator. SR has also been ob-
served in special, time-varying, monostable potenfials The accent denotes differentiation with respect to position

Alternatively, individual overdampedistablestochastic ~and the overdots indicate differentiation with respect to time.
resonators have been coupled together in arféyd. The  The nonlinear potentia/[x]= 3 ax?+ 2 8x* is monostable
spectral response of a stochastic resonator coupled into 4ar «,8>0. The stochastic ternN,[t] represents(band-
array of similar elements can significantly exceed that of arlimited) white noise with zero mean and unit root-mean-
isolated stochastic resonator. If the noise and coupling aréquare amplitude. The noise is uncorrelated from site to site.
both adjusted to establish the appropriate spatiotemporal ofthe discrete Laplaciali?x,=X,_1—2X,+ X1 implements
ganization, then the spectral response of the coupled oscilldecal linear coupling. The phantom oscillatoxg=x; and
tor to a sinusoidal signal is greatly enhanced. A signature oky+1=Xy enforce free boundary conditions.
array-enhanced SRAESR) is a local maximum in SNR as a Throughout this work, we fix the inertia and viscosity
function of both noise and coupling, manifestéfdr ex- parametersm=1 and 2'=y=0.01. We also fix the shape
ample in a single peak or “resonant island” in a contour of the potentiala=1 andB=0.1. However, we vary—and
plot of SNR as a function of noise and couplifig. Such  tune—the noise and coupling amplitudesind «. We con-
arrays can also exhibit noise-enhanced propagdaiMBP)  sider weak drivesAp<o with fp~1, so that the spectral
[8], where moderate noise significantly extends the propagaesponses are relatively simple, with omyprominent natu-
tion of a signal through the array. ral frequencies.

In this work, we study noise-mediated resonant behavior We numerically integrat¢10] the stochastic differential
in a simple array of underdamped, symmetric but nonlinearEq. (1) with a small time stepdt=Ty/2'% the Gaussian
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FIG. 2. Closeups of typical spectra fof=1 (isolated and N
=2 (coupled nonlinear monostable oscillators, for Igwolid) and
high (dashegl noise. TheN=2 spectrum includes two prominent
natural frequency peaks, corresponding to the symmetric and anti-
symmetric modes of the corresponding linearized oscillat@s.

FIG. 1. On the left, a typical low-noise spectrughf] (solid
curve of a nonlinear monostable oscillator consists of a single
prominent natural frequency peak on a smooth backgrdsirfd
(dotted curvg On the right, a numerically computed low-noise
spectrumS| f] (solid) agrees well with the corresponding linearized

theoretical spectrun®, [f] (dotted. All logarithms are base ten high noise, additional minor peaks centered at nonlinear overtones
Parameters arm=1, y=0.01 a=i B=0.1, Ap=0, f,=0.285 " appeap. Other parameters are as in Fig. 1, but with coupling
ando2=0.001 ' R ' DT IDT AT =1 for theN=2 spectrum, and noise variance as indicated.

noise being generated via the Box-Muller algoritfitd] and suitably nprmalized, with a nu_merically computed spectrum
for low noise. The agreement is excellent, except for a slight

a pseudorandom number generator. We estimate the meaf® ' ; . .
square amplitude per frequen@y power spectrums| f] by rise in 'ghe hlgh-freqyency taﬂ of_the co_mputanongl spectrum,
averaging the spectra of many segments of a long time serié‘gh'.Ch IS an unavo@able ahasmg af“faﬁf‘.l]- .lt IS worth

of the nth oscillator of the array. Each spectrum is normal-nOtIng that alter_natlve _SIOChaSt'C Imeanzathn _technlques
ized so that the bounded area is the total mean-square ampﬁﬂzg_ can tbeEreaZdllfy apphe”d dto _thF: 1 fcasel,_ ylelo_I;ng cor
tude. We find the spectra of all oscillators in an array to pd €ctions 1o q(2) for small deviations from linearity.

qualitatively similar, except for the middle oscillat@vhen it For we_ak drlves,_a typical spec_:truS[f] of a coupled
exist9, which exhibits fewer spectral peaks. N=2 oscillator consists ofiwvo prominent natural frequency

peaks superimposed on a smooth background. These peaks
correspond to symmetri@n-phasé and antisymmetrican-
IIl. WEAK-NOISE THEORY tiphas@ modes of the array. For sufficiently weak noise and
For weak drives, a typical spectrusif] of an isolated vanishing driving amplitqde, we can again explicitly repre-
N=1 oscillator consists of a single prominent natural fre-S€nt the spectrum, this time as
guency peak superimposed on a smooth background. In fact,
if the noise is sufficiently weak so that the oscillator is not
driven beyond its linear regime, then for vanishing driving, S [f]e
we can solve the linearized E() for the Fourier transform
of the time serie¥[ f] and write

1
+
m2(f2_fé)2+y2f2 rnZ(fZ_f%)Z_’_,}/21:27

()

where fo=+a/m is the frequency of the coupling-
3 2) independent symmetric mode aifig= \(a+3«)/m is the
(fe=fo) =+t higher frequency of the coupling-dependent antisymmetric
mode. Theory and computation are again in excellent agree-
wherefy,= \a/m is the natural frequency of the system. Fig- ment. Figure 2 provides example spectra at low and high
ure 1 compares the theoretical linearized spectrum of Bg. noise for bothN=1 andN=2. Note the risgin the back-

SR —
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FIG. 4. Shift in the natural frequencies of &2 oscillator
with noise and coupling. At a given drive frequenigy, indicated
by the horizontal dashed line, the noise-induced ghaip left) in-
duces two local maxima in the SNR, as a function of n¢s®tom
left), while the coupling-induced shiftop right induces one local
maximum as a function of couplin@pottom righj.

log o?

FIG. 3. Shift in natural frequency pedlof an N=1 oscillator
with noise. As the peak shifts to larger frequencies, it induces a
local maximum in the spectral responBe=§ f5]/B[fp] at the
drive frequencyfp , which is indicated by the dashed line. peak shifts to higher frequencies and broadens. Provided the

nonlinearity is nonzero£>0), increasing noise will cause
ground and the shift and broadening of the peaks with in_the natural frequency peak to shift to increasingly large fre-

creasing noise(At higher noise, additional peaks centered atduencies, as illustrated by the top graph in Fig. 3. This shift
overtones of the natural frequency appear. generates an enhanced response to a weak drive when the

Although analytic techniques can generatigpically ~ natural frequency peak centers on the drive frequency. We
elaboratg expressions for the shapes of the spectral peak&easure this response by the ratio of the spect8ifj at
[13], a simple theory can readily capture their movements,
and this is sufficient for our purposes. If we momentarily

neglect damping and driving, we may estimate the natural 007 ' : '
frequency of the nonlinear monostable oscillator by integrat- logf, ] N=3
ing the energy expressidi= $ m?+ V[ x] between the clas- A
sical turning pointsx..[E] to get the nonlinear dispersion 0.5 (- -
relation 8 : '
1 x+[E]  dX -1.0 : ;

f[E] TIE)=2ym/2 x_[E] VE—V[x] @ : : ,
where the turning points may be calculated via the implicit 4
relationshipV[x.. ]=E. Although the integral in Eq(4) can logR ; ;
be performed analytically, it is more convenient to numeri- 37 ' '
cally integrate it for a range of energies. Returning to the full ' ‘ |
equation of motion, including damping and driving, at steady 2 t T —t——
state, we find dimensionally and numerically that the average 0 ! 2 5 342 -1 0 ! 2
energy is proportional to the mean-square amplitude of the logo log x
noise (E)~2027/y=DIT. This enables us to predict the (logx =-0.1) (1080'“ = 1-0)

position of the natural frequency pedk as a function of

with noise and coupling. At a given drive frequeniyy, indicated
by the horizontal dashed line, the noise-induced gkifp left) in-
duces two local maxima in the SNR, as a function of nds®tom

For small noiser?< o>/ 8, the natural peak of an isolated left), while the coupling-induced shiftop right induces two local
N=1 oscillator is fixed, but for large noise’>a®/B, the  maxima as a function of couplingpottom righy.

IV. MODERATE NOISE
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FIG. 7. When driven sinusoidally only at one end=(1), ar-
rays of monostable nonlinear oscillators also exhibit NEP.
Smoothed contour plot of SNR as a function of noise variante
and oscillator numben. Intermediate noise optimizes the propaga-
tion of the signal. Parameters ame=1, y=5%X107% a=1, B8
=1, Ap=1, fp=0.45, andk=1.

log x

of coupling, due to the drift of the antisymmetric mode peak.

FIG. 6. Contour plots of the spectral responBesis a function AISO_’ for_sufﬂClentIy Iarge frequgnmes, _there am_ao IOC?'
of “local” noise o2 and couplings, for oscillators at the ends of Maxima inR as a function of noise. This result is a single
N=2, 3, and 4 arrays. The drive frequencies &ge=0.285, 0.3, local maximum in the noise-coupling plane. The top contour
and 0.3, respectively. In each case, thereNrel local maxima.  Plot of Fig. 6 summarizes the spectral response, where a low
noise “island” accompanies a high-noise “ridge.”

ForN=3, a typical spectrum, derived from the time series
the drive frequency to the smooth backgrouBidf ] at the  of either end oscillator, consists dfiree natural frequency
drive frequencyR=9[f;]/B[fp]. This measure is faithful peaks riding on top of a smooth background. Due to the shift
to the squared ‘“stochastic amplification factor” originally of the peaks with noise and coupling, for sufficiently large
employed to describe monostable B33, and it best exhibits frequencies, we expetivo local maxima inR as a function
the generalization of the phenomenon to arrays. We can cabf coupling(due to the drift of the nonsymmetric modesd
culateR with vanishing drive amplitude becauBemeasures three local maxima inR as a function of noise. However,
whether or not, and to what extentpatural frequency peak peak broadening due to nonlinear dispersion at high noise
is at the drive frequency, and because this frequency matctconsolidates the peaks, limiting the number of local maxima
ing is the essential ingredient of monostable SR. The rein Ras a function of noise to two, as indicated in Fig. 5. This
sponseR s illustrated in the bottom graph of Fig. 3, where it induces two local maxima in the noise-coupling plafer
is maximized when the natural frequency peak shifts to thdp just above the zero-noise natural frequenci€se middle
drive frequency, as indicated by the dashed lines. contour plot of Fig. 6 summarizes the spectral response,

A similar but richer situation exists farrays of nonlin-  where two low-noise islands accompany a high-noise ridge.
ear monostable oscillators. Consider next the ddse2. A The bottom contour plot of Fig. 6 is fdd=4, where there
typical spectrum, derived from the time series of either osare three low-noise islands.
cillator, now consists of two natural frequency peaks, corre- In this way, the spectra of typical oscillators in an array of
sponding to the symmetric and antisymmetric modes, ridindN oscillators exhibitN—1 distinct resonant local maxima as
on top of a smooth background. We can again predict the function of noise and coupling. Similar results are obtained
shift of the peaks, this time with respect both noiseand  for moderate drive amplitude&y=<o. However, for large
coupling, as indicated in Fig. 4. For sufficiently large fre- drive amplitudesAp> o, the spectral responses are much
guencies, there exists one local maximunRias a function more complicated. Large-amplitude drives induce many non-
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linear peaks in the spectra, thereby complicating efforts talistinct bulges in the contours, where regions of large SNR

succinctly summarize the dynamics. extend toward the free end of the chain, are the signatures of
NEP. When the noise variane€~ 10°, the SNR extension
V. NOISE-ENHANCED PROPAGATION reaches the end of the chain, indicating that intermediate

noise has succeeded in sustaining the signal throughout its
Recent studies have demonstrated that noise can sustaéhgth.

propagation in a variety of numerical and experimental non-
linear systemd8], including arrays of bistable oscillators. VI. CONCLUSIONS

Here, we note that NEP is also obtained in arrays of A f tabl ilat hibit multible stoch
monostable oscillators. The numerical model is like that oft. rrays o monos:;l] € oscilla orZ.e;g Ibrt T]ud'pbe S %qﬁas- i
Eq. (1), except only the initial oscillator is sinusoidally IC resonances, each resonance distinguisned by a ditteren

forced. By recording a signal-to-noise ratio at each oscillator:foum'ng‘ In thekabg,encetof Q_?tnlgnerz]i_rltﬁ(:()f), the na_mural ith
in the array, we demonstrate that moderate noise Signiﬁ_re_quency peaks do not shiit o higher Irequencies wi
oise, and the resonant islands in the noise-coupling plane

cantly extends the propagation of the sinusoidal input. Fol!
oscillators near the forcing end, the SNR decreases as tlgésappear. The abundance of these resonances suggests phe-

noise increases. But for oscillators farther away, the SNigfmenology richer than that of arrays of overdamped

goes through a local maximum as the noise increases, whi jstable oscillators, which exhibit only a single local maxi-

is the signature of a classic stochastic resonance. Oscillato um (in S'?']R) asa lfunctlt?n of r:joﬁfzgn‘d coupllrﬁt@]blFur—
near the forcing end do not need help from the noise, as th ermore, naving aiso observe I monostable arrays,

forcing amplitude there is large; however, oscillators farve anticipate that such arrays can exhibit interesting signal

from the forcing do need help from the noise, as the Signaprocessing as well as novel signal propagation. Certainly,

there is attenuated. For a given noise power, SNR decreasggonOStable arrays provide excellent examples of how noise

with oscillator number, downstream along the chain. Defin-and coupling can cooperate to induce multiple nonlinear

ing the propagation lengthas the number of oscillator®r resonances.

distance along the chairior which the SNR exceeds a cer-

tain fixed cutoff, we observe that the propagation length is

longest for moderate noise. J.F.L. thanks The College of Wooster for making possible
These data can be succinctly combined into a contour pldtis sabbatical at Georgia Tech. W.L.D. and A.R.B. acknowl-

of SNR versus noise variance versus oscillator number, as iadge the Office of Naval Research, Physical Sciences Divi-

Fig. 7. Gray levels code SNR, with white indicating large sion for support. We thank Matt Wolf and the Interactive

SNR and black indicating small SNR. The bottom-left cornerHigh Performance Computing Laboratory of the College of

represents the peak SNR of the first oscillator. The SNRComputing at Georgia Tech. This work was supported in

decreases everywhere away from this corner. However, theart by NSF Grant No. DMR-9619406.
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